feat: import elements into database using beam

main
Ricard Illa 2023-06-23 18:02:01 +02:00
parent 66782ec2ef
commit 8e89404b76
7 changed files with 84 additions and 48 deletions

View File

@ -7,6 +7,7 @@ import logging
import csv
import apache_beam as beam
import psycopg2
from apache_beam.io.filesystems import FileSystems
@ -17,9 +18,8 @@ class ReadFromCsv(beam.DoFn):
"""
def process(self, in_file):
fname = in_file.get()
logging.info("reading from input file: %s", fname)
with FileSystems.open(fname) as file:
logging.info("reading from input file: %s", in_file)
with FileSystems.open(in_file) as file:
text_wrapper = io.TextIOWrapper(file)
reader = csv.reader(text_wrapper)
try:
@ -28,3 +28,39 @@ class ReadFromCsv(beam.DoFn):
return
for row in reader:
yield dict(zip(header, row))
class WriteToPostgreSQL(beam.DoFn):
"""DoFn to write elements to a PostgreSQL database"""
def __init__(self, hostname, port, username, password, database, table):
self.hostname = hostname
self.port = port
self.username = username
self.password = password
self.database = database
self.table = table
def setup(self):
self.connection = psycopg2.connect(
host=self.hostname,
port=self.port,
user=self.username,
password=self.password,
database=self.database,
)
def process(self, element):
cursor = self.connection.cursor()
colnames = ",".join(element.keys())
values = ",".join(["%s"] * len(element))
sql = f"""
INSERT INTO { self.table } ({ colnames })
VALUES ({ values })
"""
cursor.execute(sql, list(element.values()))
self.connection.commit()
cursor.close()
def teardown(self):
self.connection.close()

View File

@ -14,8 +14,8 @@ from helpers.weight import parse_weight, dimensional_weight
class CleanRow(TypedDict):
"""Type to represent clean rows to be inserted in the database"""
gtin13: int
tcin: int
gtin13: str
tcin: str
primary_category: str
materials: Optional[List[str]]
packaging: int
@ -37,12 +37,6 @@ def parse_row(element: Dict[str, str]) -> Optional[CleanRow]:
logging.error("gtin13 missing")
return None
try:
gtin13 = int(gtin13.strip())
except ValueError:
logging.error("malformed GTIN13")
return None
# primary category should always be there
try:
primary_category = element["primary_category"]
@ -55,19 +49,13 @@ def parse_row(element: Dict[str, str]) -> Optional[CleanRow]:
logging.error("could not parse raw_specifications")
return None
# TCIN should be a mandatory field in the from of an int
# TCIN should be a mandatory field
try:
tcin_value = specifications["tcin"]
tcin = specifications["tcin"]
except KeyError:
logging.error("TCIN missing")
return None
try:
tcin = int(tcin_value.strip())
except ValueError:
logging.error("malformed TCIN")
return None
materials = parse_materials(specifications.get("materials"))
# if packaging is not specified, assume only one unit is found in the

View File

@ -1,43 +1,35 @@
#!/usr/bin/env python
import io
import logging
import csv
import apache_beam as beam
from apache_beam.io.filesystems import FileSystems
from apache_beam.options.pipeline_options import PipelineOptions
from helpers.data_io import ReadFromCsv, WriteToPostgreSQL
from helpers.parse_row import parse_row
# def __init__(self, hostname, port, username, password, database):
class SustainabilityScoreOptions(PipelineOptions):
"""Options for this pipeline"""
@classmethod
def _add_argparse_args(cls, parser):
parser.add_value_provider_argument(
"--input", help="Input CSV file to process", type=str
)
parser.add_value_provider_argument(
"--output", help="Destination destination table", type=str
)
class ReadFromCsv(beam.DoFn):
"""This custom DoFn will read from a CSV file and yield each row as a
dictionary where the row names are the keys and the cells are the values
"""
def process(self, in_file):
with FileSystems.open(in_file.get()) as file:
text_wrapper = io.TextIOWrapper(file)
reader = csv.reader(text_wrapper)
header = next(reader)
for row in reader:
yield dict(zip(header, row))
parser.add_argument("--input", help="Input CSV file to process", type=str)
parser.add_argument("--pg_hostname", help="Postgres hostname", type=str)
parser.add_argument("--pg_port", help="Postgres port", type=str)
parser.add_argument("--pg_username", help="Postgres username", type=str)
parser.add_argument("--pg_password", help="Postgres password", type=str)
parser.add_argument("--pg_database", help="Postgres database name", type=str)
parser.add_argument("--pg_table", help="Postgres table name", type=str)
def main():
"""Construct and run the pipeline"""
beam_options = PipelineOptions()
opts = beam_options.view_as(SustainabilityScoreOptions)
@ -45,7 +37,16 @@ def main():
# fmt: off
pipeline \
| beam.Create([opts.input]) \
| beam.ParDo(ReadFromCsv())
| beam.ParDo(ReadFromCsv()) \
| beam.Map(parse_row) \
| beam.ParDo(WriteToPostgreSQL(
hostname=opts.pg_hostname,
port=opts.pg_port,
username=opts.pg_username,
password=opts.pg_password,
database=opts.pg_database,
table=opts.pg_table,
))
# fmt: on

View File

@ -1,7 +1,7 @@
[project]
name = "beam_etl"
version = "0.1"
dependencies = ["wheel", "apache-beam[gcp]", "pandas"]
dependencies = ["wheel", "apache-beam[gcp]", "pandas", "psycopg2"]
[project.optional-dependencies]
dev = ["pytest", "pylint", "black"]

View File

@ -177,6 +177,8 @@ protobuf==4.23.3
# grpc-google-iam-v1
# grpcio-status
# proto-plus
psycopg2==2.9.6
# via beam-etl (pyproject.toml)
pyarrow==11.0.0
# via apache-beam
pyasn1==0.5.0

View File

@ -22,6 +22,7 @@ CSV_FNAME = (
CONFIG = {
"input": f"{ HOME }/gcs/data/{ CSV_FNAME }",
"beam_etl_path": "/beam_etl/main.py",
"output_table": "sustainability_score.products",
}
with DAG(
@ -43,7 +44,15 @@ with DAG(
etl_pipeline = BeamRunPythonPipelineOperator(
task_id="beam_etl",
py_file="{{ params.beam_etl_path }}",
pipeline_options={"input": "{{ params.input }}"},
pipeline_options={
"input": "{{ params.input }}",
"pg_hostname": "{{ conn.get('pg_db').host }}",
"pg_port": "{{ conn.get('pg_db').port }}",
"pg_username": "{{ conn.get('pg_db').login }}",
"pg_password": "{{ conn.get('pg_db').password }}",
"pg_database": "{{ conn.get('pg_db').schema }}",
"pg_table": "{{ params.output_table }}",
},
)
create_products_table >> etl_pipeline

View File

@ -1,6 +1,6 @@
CREATE TABLE IF NOT EXISTS sustainability_score.products (
gtin13 INT PRIMARY KEY,
tcin INT NOT NULL,
CREATE TABLE IF NOT EXISTS {{ params.output_table }} (
gtin13 VARCHAR PRIMARY KEY,
tcin VARCHAR NOT NULL,
primary_category VARCHAR NOT NULL,
materials VARCHAR[],
packaging INT NOT NULL,